Bibliography¶
- Gut16
John Guttag. Introduction to computation and programming using Python: With application to understanding data. MIT Press, 2016.
- Geron19
Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, 2019. ISBN 1492032611.
- HTF09
Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science and Business Media, 2009.
- Hil16
Christian Hill. Learning scientific programming with python. Cambridge University Press, 2016.
- JWHT00
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to Statistical Learning. Volume 7. New York: Springer, 2000. ISBN 978-1-4614-7137-0. arXiv:arXiv:1011.1669v3, doi:10.1007/978-1-4614-7138-7.
- KS21
Max Kuhn and Julia Silge. Tidy Modeling with R. Online book, 2021. URL: https://www.tmwr.org/.
- WG16
Hadley Wickham and Garrett Grolemund. R for data science: import, tidy, transform, visualize, and model data. O'Reilly Media, Inc., 2016. ISBN 1491910364. URL: https://r4ds.had.co.nz.
- WH00
Rüdiger Wirth and Jochen Hipp. CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, volume 1. Springer-Verlag London, UK, 2000.