Bibliography

Gut16

John Guttag. Introduction to computation and programming using Python: With application to understanding data. MIT Press, 2016.

Geron19

Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, 2019. ISBN 1492032611.

HTF09

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science and Business Media, 2009.

Hil16

Christian Hill. Learning scientific programming with python. Cambridge University Press, 2016.

JWHT00

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to Statistical Learning. Volume 7. New York: Springer, 2000. ISBN 978-1-4614-7137-0. arXiv:arXiv:1011.1669v3, doi:10.1007/978-1-4614-7138-7.

KS21

Max Kuhn and Julia Silge. Tidy Modeling with R. Online book, 2021. URL: https://www.tmwr.org/.

WG16

Hadley Wickham and Garrett Grolemund. R for data science: import, tidy, transform, visualize, and model data. O'Reilly Media, Inc., 2016. ISBN 1491910364. URL: https://r4ds.had.co.nz.

WH00

Rüdiger Wirth and Jochen Hipp. CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, volume 1. Springer-Verlag London, UK, 2000.