Chapter 12 Model building
To combine the data preparation with the model building, we use the package workflows.
A workflow is an object that can bundle together your pre-processing, modeling, and post-processing requests.
12.1 Specify model
<-
lm_spec linear_reg() %>%
set_engine("lm") %>%
set_mode(mode = "regression")
12.2 Create workflow
<-
lm_wflow workflow() %>%
add_model(lm_spec) %>%
add_recipe(housing_rec)
12.3 Evaluate model
Now we can fit the model and collect the performance metrics with collect_metrics()
:
<-
lm_wflow_eval %>%
lm_wflow fit_resamples(
~ .,
median_house_value resamples = cv_folds
)
%>%
lm_wflow_evalcollect_metrics()
## # A tibble: 2 x 6
## .metric .estimator mean n std_err .config
## <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 rmse standard 68760. 5 853. Preprocessor1_Model1
## 2 rsq standard 0.648 5 0.0111 Preprocessor1_Model1